
Stabilization of cobalt oxyhydrate superconductorw

Zhi Ren, Cao Wang, Xiang-fan Xu, Guang-han Cao,* Zhu-an Xu and Yu-heng Zhang

Received (in Cambridge, UK) 9th January 2008, Accepted 13th February 2008

First published as an Advance Article on the web 3rd March 2008

DOI: 10.1039/b800378e

Stabilization of cobalt oxyhydrate superconductor was realized

by post-treatment of the as-prepared superconductor in concen-

trated NaOH solution; this finding is expected to promote future

experimental research on the intriguing material.

Cobalt oxyhydrate superconductor NaxCoO2�yH2O (x B 0.3,

yB 1.3) has been studied intensively in recent years because of

the unconventional superconductivity realized in a triangular

lattice.1 The crystal structure consists of conducting layers of

edge-sharing CoO6 octahedra pillared by H2O/Na1/H2O

sandwich layers.2,3 Hence, the compound is also called ‘bilayer

hydrate’ (BLH). The BLH superconductor is unstable at

ambient conditions, very easily losing parts of its crystalline

water to form a monolayer hydrate (MLH) NaxCoO2�0.6H2O

whose structure is built up by identical CoO2 layers separated

by mixed (Na1, H2O) layers.4–7 Though the formal doping

level appears to be the same for both hydrates, superconduc-

tivity disappears completely in the MLH.4,5 This severe che-

mical instability of the BLH makes the study of the cobalt

oxyhydrate superconductor very challenging. For example,

during an experiment the sample handling procedure might

modify the chemical composition of the superconductor to

some extent.6 As a consequence, inconsistent experimental

results frequently appear in the literature, which greatly limits

our understanding of this ‘devil superconductor’.8 To resolve

this continuing controversy, it is highly desirable to explore a

chemically stable superconductor in the system.8 In this com-

munication we report the stabilization of cobalt oxyhydrate

superconductor through the treatment of as-prepared super-

conductor in concentrated NaOH solution (cNaOH ¼ 5 M).

The stabilized superconductor retained its BLH structure even

after being annealed at 80 1C for 30 min.

Polycrystalline samples of cobalt oxyhydrate superconduc-

tor were synthesized through the disproportionation route as

described previously.9 Parent compound g-NaxCoO2 was pre-

pared by a solid-state reaction with high purity Na2CO3 and

Co3O4 powders at 800 1C in flowing oxygen. About 1.5 g of

NaxCoO2 powder was immersed in 100 ml of 0.5 M H2SO4

solution at room temperature for 12 h. The resultant black

solid was filtered, washed with deionized water several times

and then dried in air. The as-prepared BLH superconductor

was obtained by hydration in a chamber at 100% relative

humidity (RH) at room temperature for one week. In the post-

treatment, about 1 g of the as-prepared superconductor was

dispersed in 100 ml 5 M NaOH solution. The mixture was

magnetically stirred at room temperature for 48 h. The final

product was filtered, washed with deionized water and

acetone, and then dried in air. The chemical compositions

of the as-prepared and post-treated superconductors are

Na0.20(H3O)0.15CoO2�1.06H2O and Na0.41CoO2�0.83H2O, re-

spectively. Details of the samples’ characterization are

provided in the ESI.w
Fig. 1 shows the powder X-ray diffraction (XRD) patterns

for the as-prepared superconductor subjected to various treat-

ments. The as-prepared superconductor is stable at 25 1C 40%

RH, consisting of BLH single phase with lattice parameters

a ¼ 2.823 Å and c ¼ 19.77 Å. However, equilibration at 20%

RH or mild thermal treatment at 40 1C for 3 h leads to the

transformation into MLH phase with lattice parameters a ¼
2.822 Å and c ¼ 13.80 Å. This result confirms that the

as-prepared superconductor is sensitive to ambient humidity

and temperature, in agreement with previous reports.4–7

The post-treated sample is isostructural with the as-pre-

pared superconductor. The refined lattice parameters are a ¼
2.827 Å and c ¼ 19.52 Å, consistent with the previous report.10

Compared with the as-prepared superconductor, the a-axis

expands B0.1% while the c-axis shrinks by B1%. The

expansion of the a-axis reflects the decrease in Co valence;

on the other hand, the remarkable shrinkage of the c-axis is

mainly due to the removal of H3O
1 by the ion exchange of

Na1.10 Despite this subtle difference in their crystal structures,

the chemical stability of the post-treated sample is noticeably

higher than that of the as-prepared superconductor. The inset

of Fig. 2 shows that the post-treated sample equilibrated at

Fig. 1 Powder XRD patterns for the as-prepared superconductor

Na0.20(H3O)0.15CoO2�1.06H2O subjected to various treatments.
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20% RH maintained the BLH structure though the diffraction

peaks are slightly broadened. The BLH structure was still kept

after thermal treatment up to 80 1C. Fig. 2 illustrates that there

is no significant variation in the positions of the XRD peaks

on heat treatment. That is to say, the lattice constant is not

changed by the annealing. The (00l) diffraction peaks broaden

with increasing annealing temperatures, suggesting that the

crystallinity of the post-treated sample deteriorates upon

heating. The deterioration of crystallinity was found to be

basically irreversible, probably because the platelike crystal-

line grain cracks into several pieces along ab planes upon

heating. Nevertheless, neither MLH nor anhydrous phase was

observed up to 80 1C. Further increasing the annealing

temperature resulted in the collapse of the BLH structure.

The thermogravimetric (TG) analysis of the as-prepared

superconductor and the post-treated sample is shown in Fig. 3.

For the as-prepared superconductor, the loss of water starts at

a temperature as low as 40 1C. The weight loss below 90 1C,

mainly due to the loss of crystalline water, corresponds to

B50% of the total water content. In sharp contrast, the weight

loss is negligible for the post-treated sample below 100 1C. The

TG curve for the as-prepared superconductor equilibrated at

20% RH replicates that of the MLH reported previously.4,6

The above result clearly indicates that the post-treated BLH

sample is much more stable than the as-prepared supercon-

ductor, consistent with the aforementioned XRD observa-

tions.

The chemical instability of the as-prepared cobalt oxyhy-

drate superconductor can be understood qualitatively as fol-

lows. The stability of a layered hydrate is determined by the

interlayer ions’ capability to retain their surrounding H2O

molecules.11 For the as-prepared superconductor, the inter-

layer ions consist of H3O
1 ions, incorporated inevitably

during the hydration process,12,13 in addition to Na1 ions.

The H2O molecules around Na1 ions are retained mainly by

the electrostatic interaction between the Na1 ions and polar

H2O molecules. In the case of the H3O
1 ions, the O� � �H–O

hydrogen bonds are responsible for keeping the surrounding

H2O molecules. From an energy point of view, the hydration

energy of Na1 ion (B102 kJ mol�1)14 is one order of magni-

tude larger than that of the hydronium (B10 kJ mol�1).15 In

other words, the ability of the H3O
1 ions to grasp their

surrounding H2O molecules is much lower than that of the

Na1 ions. Moreover, the O site of a H3O
1 ion has a negative

charge of 0.173 e (e is the electron charge),16 which may attract

a nearby Na1 ion and shield a part of its positive charge. As a

consequence, the electrostatic interaction between the Na1 ion

and its surrounding H2O molecules is weakened in the

as-prepared superconductor.

The treatment in concentrated NaOH solution plays a

double role in stabilizing the cobalt oxyhydrate superconduc-

tor. On the one hand, incorporation of H3O
1 is greatly

suppressed in the presence of concentrated Na1 and OH�

ions.10 This would give rise to uniform cation layers merely

consisting of Na1 ions. At the same time, the Na1 ions could

get closer to the surrounding H2O molecules so that the

electrostatic attraction between them is strengthened.17 On

the other hand, chemical analysis suggests that the H2O-to-

Na1 ratio for the post-treated sample is close to 2 : 1. To

achieve four H2O molecules surrounding a Na1 ion, each H2O

molecule may be coordinated by two neighboring Na1 ions,

which can be regarded as a particular case of the proposed

‘Na interstitial’ defects.3 In this case, the electrostatic potential

that each H2O molecule feels is the sum of the contributions

from two Na1 ions. Hence the H2O molecules are much more

difficult to lose. Combining the above two effects, the strength

with which Na1 ions keep their surrounding H2O molecules in

the post-treated sample is greatly enhanced, resulting in a

stabilized cobalt oxyhydrate superconductor.

The temperature dependence of dc magnetic susceptibility

for the post-treated sample annealed under dry helium atmo-

sphere at various temperatures is shown in Fig. 4. The post-

treated sample shows bulk superconductivity with the super-

conducting transition temperature Tc ¼ 2.55 � 0.05 K. We did

not observe any Tc degradation after the sample had been

exposed to ambient conditions for two months. Moreover, Tc

remained unchanged after annealing the sample at 60 1C for

30 min. Further increasing the annealing temperature resulted

in gradual depression of Tc, as shown in the inset of Fig. 4. The

superconducting diamagnetism of the post-treated sample

decreases with increasing annealing temperatures, which may

Fig. 2 XRD patterns for the post-treated sample Na0.41CoO2�
0.83H2O annealed at various temperatures for 30 min each. The inset

shows the XRD pattern of the post-treated sample equilibrated at

20% RH and 25 1C.

Fig. 3 Thermogravimetric curves of (a) the as-prepared supercon-

ductor, (b) the post-treated sample, and (c) the as-prepared super-

conductor after being equilibrated at 25 1C and 20% RH (forming a

MLH phase). Some intermediate products are marked in the plot.
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be attributed to the decrease of the crystallinity as indicated by

the above XRD analysis.

In summary, stabilization of the cobalt oxyhydrate super-

conductor is feasible by the treatment of as-prepared super-

conductor in concentrated NaOH solution. The post-treated

superconductor is stable under laboratory conditions (25 1C,

25–40% RH) for at least two months. Strikingly, it can retain

the BLH structure even after annealing at 80 1C and 40% RH

for 30 min. It is hoped that further study of the stabilized

superconductor will resolve the continuing controversy in

physical property measurements and enrich our knowledge

of this fascinating material.
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